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Brain-computer music interfacing (BCMI) is a field of research 
addressing the idea that electrical oscillations within the brain can be 
used to generate or manipulate music, or support a musical activity. This 
is achieved by transmitting brainwave activity expressed as electrical 
frequencies using electroencephalogram (EEG) electrodes placed 
upon the scalp to a computer which maps or translates this input to 
audible output with musical structures or rules (Miranda, Castet 2014; 
Rosenboom 2014). The concept of using this rhythm rich EEG signal for 
musical applications has led to the emergence of new types of musical 
instruments, interactions, performances and experiences which have 
captured the imaginations of many artists and technologists (Miranda 
2006a, 2006b).

What is BCMI?

The term BCMI was coined by Eduardo Reck Miranda, and stemmed 
directly from adopting brain-computer interfacing (BCI) technology for 
supporting musical activity (Miranda 2006a, 2006b; Miranda, Castet 
2014).  Figure 1 illustrates the schematics of a BCMI in terms described 
by Miranda. Systems such as these are made up of the following steps:

1. Audio/Visual Stimuli (optional): this is present in some systems 
where audio or visual stimuli other than the audio output can 
function as additional feedback or as part of controlling the 
system.

2. EEG Input: EEG signals recorded via electrodes placed on the  
scalp.

3. Signal Processing: amplification and data analysis to isolate 
and extract meaningful information for further classification or 
processing depending on the system design.

4. Transformation Algorithm: maps the EEG data to musical 
parameters, such as MIDI data.
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5. Musical Engine: receives musical parameters as input commands 
for musical audio output.

The way audio output expresses brainwave activity is dependent 
on the design and components of the BCMI system. There is currently 
no standard configuration of hardware or software – all BCMI systems 
described by the literature have been designed differently according 
to their purposes, limitations and validation methods. Types of BCMI 
systems and prevalent methods for achieving the steps illustrated in 
Figure 1 will be described in detail later in this text.

Figure 1. Steps of a typical BCMI system (adapted from Miranda, Castet 2014: 227)

Background and State-of-the-Art

The first person to record electrical brainwave activity was Hans 
Berger in 1924 (Berger 1929; Adrian et al. 1934; Miranda 2006a, 2006b), 
which led to the development of EEG technology as a tool for diagnosing 
neurological disorders such as epilepsy (Buzsáki 2006; Nunez, 
Srinivasan 2006). The first person to propose using the EEG as a method 
for interfacing with machines was Jaques Vidal in 1973 (Vidal 1973; 
Gürkök, Nijholt 2013; Wadeson et al. 2015). The first person to use the 
EEG to create music was the composer Alvin Lucier in 1965 by directly 
applying his amplified brainwaves to an array of percussion instruments 
(Christopher et al. 2014). He was closely followed by other composers 
and musicians seeking to harness the EEG for music, including David 
Rosenboom’s research in which he searches for potentially useful data 
in the EEG for music making (Rosenboom 1999; Väljamäe et al. 2011). 
Since then, progress in this field has been made in step with technological 
developments and limitations in biomedical engineering, neuroscience, 
and computer technology (Miranda, Castet 2014).

Four major challenges in the field of BCMI are therefore closely 
related to choices made while putting together a system that can 
actualize the steps described in Figure 1: 

• first, designing and accessing the configuration of hardware 
components necessary;

• second, the isolation of EEG information meaningful for control; 
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• third, the development and implementation of a chosen mapping 
strategy for generating or manipulating music; 

• and fourth, defining ways that this technology can be applied to 
meeting needs in therapy and in improving lives (Tan, Nijholt 
2010; Miranda, Castet 2014). 

The inconsistency of methodology which can be observed in the 
literature, however, is typical of newly developing research areas – 
it is a novel and exciting, deep theoretical space where the research 
communities involved are enthusiastic but diasporic.

Types of BCMI Systems

Despite the wide variety of BCMI systems described in the literature, 
Miranda notes that, with respect to the historical development of this 
research field, such systems can be classified into three categories 
(Miranda, Castet 2014) presented in Table 1:

Table 1. Types of BCMI classified by technique

Type of Technique Description
EEG sonification Conversion of EEG data into sound for analysis in 

non-musical domains, such as in medicine, where 
listening to the EEG signal is a tool for analysis or 
diagnosis of specific mental states or conditions.

EEG musification Mapping EEG information arbitrarily to musical 
parameters, with limited control or efficacy.

BCI control Direct, real-time cognitive control of music is 
inherent to the system design.

The techniques described above are dependent on any given system’s 
technical limitations and are often chosen to best serve research goals. 
Thus, BCMI research can also be classified according to research 
communities. Table 2 describes two major types of research community 
in terms of their aims, and main application areas (Tan, Nijholt 2010; 
Miranda, Castet 2014).
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Table 2. Types of BCMI research communities

Research 
Community

Humanities Scientific

Aims To use BCMI for musical performance, 
composition, instrument design, and 
new collaborative or interactive musical 
experiences.

To use BCMI for music therapy, testing 
music psychology or neurophysiological 
hypotheses, developing better technology 
through evaluating the performance of 
configurations within their focus.

Applications • Playing musical instruments or 
manipulating interactive musical 
systems with thoughts.

• Composing music by selecting notes, 
fragments or textures stored within an 
interactive system.

• Participating in individual or 
collaborative control of musical 
parameters such as pitch, dynamics, 
timbre and tempo.

• Generating audio/visual stimuli to 
support a musical activity such as 
performance, or interactive installation.

• Neurofeedback training for persons and 
circumstances where learning to control 
mental states at will is beneficial to 
health or well-being, such as in treating 
depression.

• Enabling people who cannot play musical 
instruments to experience the social 
benefits of collaborative music making, 
such as to provide a means for self-
actualization for shut-in cases where bodily 
movement is limited.

• Environmental control, such as selection of 
music based on mood or desired mood.

Humanities, research communities, music psychologists and 
musicologists call for more embodied approaches which take into 
account the multi-faceted nature of musical interaction including 
the individual’s musical experience, the corporeal aspect of musical 
activity, as well as the physical and socio-psychological environment 
(Cross 2005; Juslin 2005; Large 2008; Leman 2008, 2010; Overy, 
Molnar-Szakacs 2009; Hargreaves et al. 2011; McGuiness,  Overy 2011; 
Rocchesso 2011; Gill 2012; Giacomo, Keller 2014; Keller et al. 2014; 
Reidsma et al. 2014; Haumann 2015; Laroche, Kaddouch 2015; Volpe 
et al. 2016). Literature reporting in the area of artistic BCMI research 
is thus often more concerned with evaluating the aesthetic result of 
the system’s output than documenting aspects useful for replicating 
or carrying forward their approaches. This is partly a result of EEG 
technology still being relatively expensive and difficult to obtain today –  
the artistically inclined therefore often rely on consumer grade EEG 
devices where the technical processes such as signal extraction, analysis, 
classification and computer actuation are in great part defined by 
algorithms built into the product (Maskeliunas et al. 2016). Bypassing 
these technical processes often results in highly creative solutions albeit 
under-informed by the underlying sciences, thus lacking reliable data 
for practical use. Some examples of the leading commercially available 
brain activity monitoring systems to date are made by Emotiv, 
MindMedia, Neurosky, Enobio, iMotions, and Muse1. Thus, BCMI for 
artistic research has become an uneven but spontaneous playing field 
where new ideas are rapidly born and manifest into unique proof-of-
concept musical experiences, but are rarely useful for making further 
advances. 

1 See respectively the webpages 
Emotiv, MindMedia, Neurosky, 

Neuroelectrics [Products / Enobio], 
iMotions, and Muse (a full 

description is provided in the list of 
references at the end of the article).
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Because its aims are aligned to medical applications, the scientific 
research community calls for more rigorous assessment of methods, 
clinical grade equipment, and detailed reportage for scientific 
validation of their results. For research to be of practical use in a certain 
community, the scientific community calls for detailed documentation 
describing the following parameters (Hermann 2008):

• equipment technical details: electrodes, amplifier models and 
computer hardware;

• electrode placement, channels and referencing technique used 
(e.g. a 10–20 electrode system);

• EEG temporal resolution or sampling rate (e.g. 250 Hz); 
• pre-filtering of low and high pass frequencies;
• details of the signal processing (e.g. block or window size: fast 

Fourier transform, or FFT);
• reduction of artefacts;
• EEG features selected for sonification (e.g. relations or objective 

properties of amplitude);
• musical parameters selected for generation or manipulation, 

and how this is precisely related to the EEG input (e.g. mapping 
musical output tempo to average alpha power from a single 
electrode).

However, imposing strict methodological controls often results in 
disembodied musical interactions, far removed from socio-cultural 
contexts where musical experiences take place in every-day life (Leman 
2010). Commentary on the research space found in the literature 
suggests that this gap can be closed by encouraging closer collaboration 
between these communities (Leman 2008; Miranda, Castet 2014). Future 
research is often encouraged to systematically compare different BCMI 
configurations, methods, and mappings, and challenged to conduct 
research in embodied musical contexts in order to be adopted and 
applied in the real world.

The section to follow examines current approaches to BCMI, 
describing in greater detail the materials and methods for obtaining 
an EEG signal, processing and extracting features from that signal, and 
transforming it into data which can be mapped for musical control (see 
Figure 1).

Approaches to BCMI

BCMI systems rely on EEG technology, which has been developed 
and informed by neuroscience mainly for the purpose of determining 
functional brain activity and diagnosing neural disorders (Miranda 
2006a, 2006b; Nunez and Srinivasan 2006; Rosenboom 2014). More 
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recently, EEG research has explored many new methods for detecting 
mental processes, commands, states, as well as levels of arousal, 
attention and emotion by charting neural activity represented as 
frequencies over time (Hondrou, Caridakis 2012; Maskeliunas et al. 
2016). Music itself can modulate these mental dimensions, and it also 
exists in the frequency-time domain. Both brainwaves and music can 
be represented as frequency over time, and this fundamental similarity 
seems to promise great potential for meaningful translation. The 
EEG signal has a densely rhythmic quality, which it lends itself well 
to translation into musical parameters. One need only filter away the 
noise and isolate the rhythms to assign controls to. This process is at 
the heart of every BCMI system, and the equipment and methods used 
are of great importance to the type of validation their designs seek. 
The following sections examine approaches to BCMI by describing the 
technology and techniques employed at each stage of the process from 
recording EEG input to audio output.

The EEG Method for BCMI

To aid comprehension of the later material, this section is dedicated 
to relaying foundational knowledge on the EEG method relevant to 
BCMI. The temporal resolution of the EEG method is in the millisecond 
range (Berger 1929; Buzsáki 2006), making it the most practical choice 
among other functional neuroimaging methods such as PET, MEG, 
or fMRI for BCMI applications which require real-time feedback for 
a sense of intentional control. In BCMI applications, this signal is 
processed by software that maps the information for musical output 
determined by the musical engine described in Figure 1. The first 
stage of a BCMI system is therefore acquiring an EEG signal using 
electrodes placed on the scalp. Collectively, the data gathered from all 
the electrodes is referred to as the EEG signal, which represents neural 
activations expressed as oscillations of electrical potential that can be 
analyzed in a number of dimensions (Buzsáki 2006). Each electrode 
is referred to as a channel, and a standard configuration is known as 
the 10–20 electrode system (Jasper 1958; Niedermeyer, da Silva 2005; 
Sanei, Chambers 2007), though more channels are possible. Figure 2 
illustrates the locations of electrodes using the 10–20 configuration. 

Different regions in the brain have different specializations, thus 
the locations of the electrodes are significant for detecting specific 
neural activity from specific areas (Buzsáki 2006; Nunez, Srinivasan 
2006; Tatum et al. 2007). The electrodes are named after the cortical 
area they are located: F for frontal, C for central, P for parietal, and 
O for occipital. Even numbers follow the letter prefix for locations on 
the right hemisphere, while those on left hemisphere are followed by 
odd numbers. The letter ‘z’ follows locations on the top of the head, 
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directly between hemispheres (Tatum et al. 2007; Miranda, Castet 2014). 
However, the spatial resolution of the EEG is relatively low compared 
to other methods, and the data can represent several coordinated 
networks (Buzsáki 2006). 

Figure 2. The international 10–20 system configuration for EEG electrode placement (adapted from 
Niedermeyer, da Silva 2005: 140) 

The skull attenuates the electrical signal and as a result, its amplitude 
is very low, at approximately 100 µV (Malmivuo et.al. 1995: 257). To 
address this, conductive gel is usually applied to each electrode, and 
wires deliver the signal to an amplifier, before being digitized by a 
computer. The need for conductive gel and wires has been an obstacle 
for EEG technology in becoming practical for BCMI applications which 
typically call for portability, fast set-up times, and freedom of body 
movement.

Recent developments in EEG technology have given rise to more 
affordable and portable devices, and some are now able to measure a 
useful range of parameters applicable to BCMI systems widely accessible 
for consumer purchase (see Footnote 1). Some of these have overcome 
the aforementioned challenges by incorporating dry electrodes and 
wireless transmission. At present, consumer grade devices used in 
documented BCMI applications often have limited reliability, and 
customisability relies on expertise in computer science and advanced 
mathematics (Maskeliunas et al. 2016). However, these products are 
constantly improving and have been used in a growing number of 
peer-reviewed studies (Ramirez, Vamvakousis 2012; Levicán et al. 
2017). As aforementioned, using the EEG for BCMI involves processing 
the raw electrical signals and mapping these to musical parameters. 
The following sections describes these steps in further detail.
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Aspects of EEG Signal Processing

The first step in processing the EEG signal is noise reduction. Noise 
mainly results from muscle artefacts, interference from electrical 
power lines, and other exogenous sources of electromagnetism, and 
is not relevant to the input (Tan, Nijholt 2010; Hondrou, Caridakis 
2012; Miranda, Castet 2014; Wadeson et al. 2015). Noise is normally 
reduced using digital filters, for example, computer software during 
digital conversion. For example, electrical interference from power 
lines typically occur in the 50–60 Hz range depending on the power 
supply, so a narrow band filter may be applied to that range to reduce 
noise in the signal (Tatum et al. 2007). When using a standard electrode 
configuration like the 10–20 system, two reference electrodes are 
normally attached to the earlobes and a grounding electrode attached 
anywhere on the body. Signals from the reference electrodes represent 
electrical information which does not originate from cerebral activity, 
and is thus identified as noise to be subtracted from the signals 
originating from the active electrodes on the scalp. Similarly, the 
grounding electrode is connected to the ground circuit in the amplifier, 
which allows the computer to filter out electrical noise originating from 
the amplifier and other nearby electronic systems (Teplan 2002; Nunez, 
Srinivasan 2006).

Digital conversion uses sample rates which are also expressed in Hz, 
indicating the number of data points recorded per second. For example, 
for research and clinical use, sample rates normally range between 250 
Hz (4 milliseconds) and 2000 Hz (0.5 milliseconds), though rates up 
to 20,000 Hz (0.05 milliseconds) are technically possible (Tan, Nijholt 
2010). Additionally, high pass and low pass filters are applied to frame 
the window of frequencies being measured (Nunez and Srinivasan 
2006). On a computer, a typical EEG signal display window represents 
digitized signals from individual electrodes as sinusoidal waveforms 
revealing amplitude plotted over time. Various artefacts can be 
observed in these signals caused by non-cerebral sources.

Figure 3. Four common artefacts in the EEG signal displayed as digitized waveforms (Cherninskyi 
2015)



71

An example of a typical EEG display is shown in Figure 3, revealing 
four common types of artefacts which are normally removed as part of 
the signal processing stage (Nunez and Srinivasan 2006; Tatum et al. 
2007; Lopata 2014). Number 1 represents eyeball muscular excitation, 
such as blinking. Number 2 shows an artefact on channel P3 and is 
the result of a bad contact between the electrode and the scalp at that 
location. Number 3 is an artefact resulting from the act of swallowing. 
Number 4 shows an artefact caused by a bad contact between the 
reference electrode and the skin.

The EEG waveforms shown in Figure 3 simply reflect the raw data 
input from each electrode before any transformation algorithms are 
applied for feature extraction. One can observe from this representation 
that EEG processing fundamentally takes place in the time-frequency 
dimension, the level of amplitude dimension, and the spatial dimension. 
The entire available EEG spectrum can range from 0 Hz to up to half 
of the sampling rate, but research typically has focused on frequencies 
between 0.5–50 Hz, as this is the range relevant to neural activity ranging 
from deep sleep to highly engaged waking activities such as in sports 
or music. Measurements outside of this window are rare as activity 
above and below are difficult to distinguish from artefacts. In clinical 
practice, this range has typically been divided into five categories or 
bandwidths relevant to types of mental activity or states, illustrated in 
Figure 4 (Nunez, Srinivasan 2006; Tan, Nijholt 2010; Lopata 2014).

Figure 4. Typical frequency band divisions of the EEG spectrum and associated mental activity 
(adapted from Tan, Nijholt 2010: 207)
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So far, we have seen how EEG signals are recorded, measured and 
represented for analysis for clinical use, but for BCMI applications the 
ranges described in Figure 4 may be divided differently and represent 
cognitive and affective correlates of EEG activity native to processes 
of musical interaction. Methods of feature extraction from such EEG 
representations for BCMI application will be described in the following 
section.

EEG Feature Extraction and Classification

There are various methods for transforming the raw EEG data, and 
analyzing it to identify features for use in the musical engine stage of 
a BCMI described in Figure 1. Algorithms are used to automatically 
isolate a set of relevant features, a set of relevant channels, or features 
from specific channels based on their location on the scalp (Lotte 2014). 
In other words, specific brainwave activities selected to control a BCMI 
are tracked over time and are assigned as control inputs. 

The mathematic algorithms which describe the conversion of 
electrical brainwaves into a spectrum of sinusoidal waveforms and 
simultaneously identifying meaningful features for elicitation of 
control and indeed the computation power required to actuate these 
algorithms in real-time for BCI applications originate from methods 
for analyzing EEG data for research or clinical diagnosis. For reasons 
mentioned in the introduction of this paper, BCMI research has mostly 
been limited to using algorithms from the field of BCI. The most 
common function of these algorithms is pattern or feature recognition, 
and thus the classification of processed EEG data (Lotte et al. 2007). In 
other words, these classification algorithms look for patterns or features 
in the EEG signal specific to a mental command or emotional state and 
relay parametrical information to be mapped by the musical engine in 
a BCMI system (see Figure 1). 

Classifier algorithms are chosen for the EEG features and properties 
they describe and must overcome the fact that EEG signals contain 
a lot of noise and have a high dimensionality (Rakotomamonjy et 
al. 2005). Noise is filtered by identifying and subtracting it from the 
signal, but with regards to high dimensionality, consider that in some 
contexts algorithms are used to extract multiple features from various 
channels across several segments of time (Haselsteiner, Pfurtscheller 
2000). Although many BCI applications have achieved their aims using 
only one classification algorithm, some have used multiple algorithms 
aggregated in different combinations to concatenate a single feature or 
group of features (Lee, Choi 2003; Lotte et al. 2007). 

Two main types of EEG data are typically used for feature extraction 
for BCMI applications: event-related potentials (ERPs) and the 
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spontaneous EEG. ERPs are events observed as changes in the EEG 
spectrum due to external events or stimuli. Systems using spontaneous 
EEG data analyze the ongoing data stream for trends or patterns that 
match specific neural activity. One of the first and most commonly 
used transformations of the spontaneous EEG in early BCMI systems 
is a fast Fourier transform (FFT), which averages the amplitude of 
specific frequency bands over time (Miranda 2006a, 2006b; Nunez 
and Srinivasan 2006; Tan, Nijholt 2010; see Figure 4). Using the 
FFT algorithmic transformation, frequency bands that have higher 
amplitudes averaged over a specific period of time are considered to 
reflect attributes of the dominant mental state for that period (Teplan 
2002; Zhuang et al. 2009). The divisions or thresholds of the frequency 
spectrum vary slightly between different studies according to the type 
of activity in focus. This type of transformation has been useful in BCIs 
aimed at actuating output responding to metrics such as alertness and 
relaxation, and has been instrumental in developing neurofeedback 
techniques where, for example, listening to the sonification of the 
transformed signal allows the user to learn to consciously steer the 
EEG towards desired mental states (Tan, Nijholt 2010; McCreadie et al. 
2013). In other words, a user may learn to manipulate the amplitudes 
of individual frequency bands by undergoing neurofeedback training, 
thereby learning to control a BCMI system designed to map those 
parameters to output designated audio/visual content or events. Other 
types of algorithms can track spectral dynamics, extracting information 
about changes or peak amplitudes within a specific frequency band to 
be used as features for sonification or control (Hinterberger 2011; Wu 
et al. 2010). Thus, the FFT has been an attractive and reliable candidate 
for feature extraction in relatively simple BCMI systems of the EEG 
sonification type (see Table 1), where in such a case a user’s overall 
mental state sonified in this way could be used to control associated 
musical dynamics or tempo. 

In practice, neurofeedback training for a BCMI application aimed 
at optimizing affective performance may be divided into slow wave 
and fast wave training. The goal of slow-wave alpha/theta (A/T) 
training could be for the user to raise the amplitude of slow waves 
Theta range (4–8 Hz) above that of the Alpha range (8–12 Hz), while 
in fast-wave training the goal may be to raise the amplitude of sensor-
motoric rhythms (SMR) in the low beta range (12–15 Hz) and maintain 
it without allowing frequencies higher or lower in the spectrum to 
rise concurrently. This type of training has shown to improve musical 
performance on several standardized evaluation scales proposed for 
judging the quality of a musical performance such as level of technical 
security, musicality, expressive range and communication of emotional 
commitment and conviction to name a few (Gruzelier 2011). Because of 
these benefits, as well as the fact that one learns to modulate amplitudes 
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between specific frequency bands, this type of training could be a prime 
candidate for learning to control a BCMI system. But modulations 
within specific EEG spectrum frequency bands are only one type of 
feature which may be extracted for BCMI system control.

More advanced BCMI systems of the EEG musification and BCI 
control types (see Table 1) rely on other features of the EEG signal 
which are event related (they look for ERPs). For example, imagining 
body movement, gazing at a blinking light, recognizing a picture, or 
doing mental tasks produce features in the EEG signal that can be used 
to command a BCI (Miranda, Castet 2014). These have been explored 
at various depths in the literature, but in a recent (2014) introductory 
chapter to EEG-based BCIs, author Ramaswamy Palaniappan identifies 
several BCI paradigms of feature extraction charted onto Table 3 
(Palaniappan 2014).

Table 3. BCI paradigms of feature extraction (adapted from Palaniappan, in Miranda, Castet 2014: 34–37) 

BCI 
Paradigm

Description Feature Details EEG Analysis BCMI Application
Example

Motor 
imagery

• Imagining simple 
body movement, 
such as hand 
movement, produces 
changes in the EEG 
called event-related 
desynchronization 
(ERD) and event related 
synchronization (ERS). 

• Example: Imagining 
moving the left hand 
results in an ERD in the 
right motor cortex, and 
an ERS in the left motor 
cortex.

• Frequency range: 8– 
30 Hz (alpha and beta 
bands). 

• 10–20 electrode 
location: C3, C4.

• EEG feature: 
simultaneous ERD and 
ERS.

• ERD: EEG attenuation 
in primary and 
secondary motor 
cortices.

• ERS: EEG amplification 
in the ipsilateral 
hemisphere.

• Identifying 
relevant 
electrode 
locations.

• Determining 
spectral 
range.

• Choosing 
features for 
detecting 
the type 
of motor 
imagery.

• Imagined 
movement is 
represented by 
sonic events.

Steady-
state 
visual 
evoked 
potential 
(SSVEP)

• Gazing at visual 
stimulus that flashes 
or blinks at 6 Hz and 
above entrains the EEG 
in the visual cortex to 
that frequency.

• Example: Focusing on 
a blinking LED light or 
target area on a screen 
results in the same 
frequency appearing in 
the occipital region of 
the visual cortex.

• Frequency range: 6– 
60 Hz.

• 10–20 electrode 
location: O1, O2.

• EEG feature: 
spontaneous frequency 
following effect of the 
brain.

• Detecting 
and isolating 
the target 
feature.

• Choosing a 
specific flashing 
visual stimuli to 
focus on indicates 
a command for the 
music engine (see 
Figure 1) to carry 
out. 
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P300 
Visual 
evoked 
potential 
(VEP)

• EEG feature occurring 
300–600 milliseconds 
after exposure to visual 
stimuli. These can be 
letters or numbers 
arranged in a grid 
of flashing rows and 
columns. 

• Example: Task-relevant 
or decision-making 
stimuli such as 
recognizing a picture 
or choosing a number 
from a flashing grid 
results in a P300 
response in the parietal 
cortex.

• Frequency range: 8 Hz 
and below.

• 10–20 electrode 
location: Fz, Cz, Pz. 

• EEG feature: higher 
P300 amplitude will 
occur for the object 
in the visual stimuli 
focused on.

• Involves 
multiple 
trials due 
to higher 
background 
EEG.

• Choosing musical 
notes from a 
flashing grid 
for composing a 
melody.

• Choosing from a 
number of musical 
parameters to 
control in the 
musical output.

Mental 
task

• Specific types of mental 
task activate specific 
brain regions and can 
be detected as inter-
hemispheric patterns in 
the EEG.

• Example: Doing math 
equations in the mind 
results in higher EEG 
activity in the left 
hemisphere than the 
right hemisphere.

• Frequency range: 8– 
30 Hz.

• 10–20 electrode 
location: all channels 
in two groups – left 
and right hemisphere 
locations.

• EEG feature: distinct 
differences in EEG 
activity between brain 
hemispheres.

• Uses an 
asymmetry 
ratio to 
compare 
EEG 
amplitude 
between 
hemispheres.

• Tasks such as 
improvisation 
and score reading 
result in different 
patterns of activity 
between brain 
hemispheres.

• The type of 
mental effort a 
user is engaged 
in affects the 
sound of a musical 
instrument being 
played.

Slow 
cortical 
potential
(SCP)

• Changes in the low 
frequency range of the 
EEG are associated with 
certain tasks.

• Example: Planning 
or preparing to 
move causes a dip in 
amplitude in the low 
frequency range of the 
EEG.

• Frequency range: 1– 
2 Hz.

• 10–20 electrode 
location: dependent on 
targeted task.

• EEG feature: 
modulation between 
positive and negative 
power SCP. 

• Relies on 
extensive 
user 
conditioning 
to learn to 
manipulate 
the SCP.

• Manipulating 
the SCP allows a 
user to modulate 
between distinct 
musical timbres.

All of these paradigms identify useful features for mapping to musical 
parameters or commands but each have strengths and weaknesses 
for application in BCMI systems. Motor imagery tasks currently only 
cause changes in the EEG after a few seconds latency and requires user 
training, but does not require visual stimuli to work (step 1 of Figure 1). 
Mental tasks also do not require visual stimuli, but this method relies 
on frequent use and re-training as patterns representing specific tasks 
change over time. The disadvantage of SSVEP and P300 VEP methods 
is that focusing on flashing visual stimuli is practical for only a few 
minutes at a time and runs the risk of triggering epileptic episodes, 
however the major advantage is that they require as few as one electrode 
to work. The SCP method requires extensive conditioning to learn to 
control, but is very reliable in terms of performance (Palaniappan 2014). 
Therefore, any venture into the BCMI research and application space 
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today must make an informed choice of mapping methods depending 
on its ultimate purpose.

The next step in the BCMI system involves mapping these features 
to control parameters relevant to studying or supporting a specific 
musical activity. The following section discusses the role of mapping 
and describes some of the prevalent strategies that have been reported 
in the literature.

Following feature extraction, mapping the isolated and transformed 
EEG information to music in the musical engine (see Figure 1) is the 
next step in a BCMI system. Much BCMI research has given focus to 
mapping because of its analogies to the complex interaction between 
musicians and their instruments, and because it gives rise to degrees 
of control through which levels of expressivity and intention can be 
conveyed (Miranda, Eaton 2014). The role of mapping in BCMIs is 
akin to becoming accustomed to playing a musical instrument in the 
sense that the features extracted from the EEG (such as the amplitude 
of beta band waves measured between hemispheres) can become 
the ‘fingers’ of a user upon a virtual instrument, or plot a cross-fade 
between two types of music stored in the system based on the user’s 
object of focus, just to name two hypothetical examples. Mapping in 
digital or electronic-based musical instruments has been defined as 
the correspondence between control parameters derived from user 
actions and sound synthesis parameters, and can be further classified 
in terms of the complexity of its signal relationship (the number of 
connections existing between input and output parameters; Hunt et al. 
2000; Miranda, Eaton 2014). Table 4 describes four types of mapping 
strategies.

Table 4. Types of mapping strategy based on signal relationship complexity (adapted from Hunt et al. 2000: 210)

Signal 
Relationship

Description BCMI Application Example

One to one A single input parameter is mapped 
to a single output parameter.

A P300 VEP response triggers playback of a single 
musical pitch.

One to many A single input parameter is mapped 
to multiple output parameters.

Average amplitude of the alpha frequency band 
modulates attack velocity, timbre and reverb of a 
synthesizer instrument.

Many to many A number of input parameters are 
mapped to a number of output 
parameters.

Each band of the EEG frequency spectrum is 
assigned control over activating different musical 
instrument sounds, as well as their placement in a 
stereo field.

Many to one Multiple input parameters 
are mapped to a single output 
parameter.

Motor imagery of a hand gesture (ERD, ERS) while 
focusing gaze on visual stimuli (SSVEP) results in 
the playback of a stored musical fragment.
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Mapping strategies can therefore greatly determine the level of 
interactivity a user may experience using a BCMI, and choices made in 
reports in the literature are usually based on the goals of the system’s 
design, but sometimes limited by cost or technology.  

One clear distinction between playing an acoustic instrument and 
playing a BCMI, is that in acoustic instruments mapping is explicit – 
plucking a string directly results in a musical tone; in BCMIs, mapping 
uses generative mechanisms – neuronal activity. The lack of apparent 
cause and effect relationships between the user’s actions and the output 
from the musical engine is often the source of criticism for BCMIs with 
passive or selective types of control.

As aforementioned, all BCMI systems are unique, though certain 
hardware and software components appear more often in the literature. 
However, BCMI systems can be classified by the type of control 
achieved as a result of their designs (Hunt et al. 2000; Miranda, Eaton 
2014; Wadeson et al. 2015; Eaton, Miranda 2016). Table 5 describes four 
major types of control that have been achieved in BCMI documentation.

Table 5. Types of control in BCMI systems

Type of Control Description
Passive Returns stored media in the form of musical sounds, fragments or textures as output. 

Does not rely on intentional commands from the user.
Selective The user learns to steer his or her EEG, in effect, learning to cognitively adjust levels of 

attention, arousal or emotion in order to intentionally manipulate the output of stored 
media. 

Direct Users interacts with software application which enables specific choices of output 
such as musical pitches or rhythms. These are often represented as tools or elements to 
choose from.

Collaborative Enables more than one user to interact musically within the system. Some 
collaborative systems use passive or selective types of control.

From these types of control, we can observe their direct associations 
with the 3 main types of BCMI system described in Table 1: passive 
control is normally found in EEG sonification systems, selective control –  
in EEG musification systems, and direct control – in BCI systems. 
Collaborative control types can be possible in all 3 main types of 
BCMI system. Considering the wide variety of one-of-a-kind mapping 
strategies and disparaging technologies employed in literature 
reportage, the remainder of this section will focus on illustrating 
general principles with a few key examples. Many other examples of 
specific cases can be found compiled in books, and papers referenced 
within this review (Tan, Nijholt 2010; Gürkök, Nijholt 2013; Miranda, 
Castet 2014; Christopher et al. 2014; Wadeson et al. 2015). 

A simple example of the EEG sonification type of BCMI could be 
what is widely considered to be the very first performance of a BCMI – 
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Music for Solo Performer by Alvin Lucier in 1965 (Gürkök, Nijholt 2013; 
Christopher et al. 2014). He amplified his EEG in the alpha range (in 
his case 8–13 Hz) from two electrodes attached to his forehead. This 
amplified signal was sent directly to a number of speakers, each of 
which was connected to an array of percussion instruments. The 
amplitude was controlled manually, and speaker channels were mixed 
individually, but another feature of Lucier’s work was the triggering 
of recorded loops of alpha band activity that was transposed into the 
audible hearing range. These were triggered to play in response to the 
amplitude of the alpha rhythm exceeding a certain threshold (Miranda, 
Eaton 2014). This early BCMI could be described as having a one to 
many signal relationship, since his alpha waves were used to activate 
multiple speakers as well as trigger playback of a tape loop. It also could 
be considered as having a ‘passive to loose’ form of selective control, 
since he could to some degree influence the output by steering his EEG 
within the alpha range. As a conceptual composition piece, the image 
of the composer with his head fitted with wires, sitting motionless upon 
a darkened stage amongst an array of roaring percussion instruments 
responding to his brain, is validation enough for this type of BCMI. 
It’s remarkable to note that this performance predates Vidal’s first 
conceptualized BCI in 1973 (Vidal 1973; Tan, Nijholt 2010; Miranda, 
Castet 2014), a fact illustrating that progress in BCMI and BCI spur each 
other on.

Jumping ahead roughly 3 decades, a prime example of the EEG 
musification type of BCMI could be the BCMI piano created by Miranda 
and colleagues described in a paper called Brain-Computer Interface for 
Composition and Performance published in 2006 (Miranda 2006a). Here the 
system loads the sets of musical building blocks consisting of melodic 
fragments in two distinctly different compositional styles for piano 
(Robert Schumann and Ludwig van Beethoven) based on generative 
rules driven by data resulting from a Hjorth analysis2 of 14 of electrodes 
(7 pairs to form a bipolar montage). A Hjorth analysis is a form of clinical 
EEG analysis which measures attributes such as activity, mobility and 
complexity in the spontaneous EEG (Hjorth 1970). Another data stream 
collects information about the signal’s complexity and is mapped to 
the tempo and dynamics of the musical output. Mapping between the 
extracted EEG information in the first data stream and the types of 
musical style making up the musical building blocks were arbitrary. 
This BCMI design could be classified as having a many to many signal 
relationship since two individually transformed data streams are used 
as input, each of which manipulate more than one parameter. However, 
it also falls in the crack between passive and selective BCMI control 
types, as the musical building blocks are assigned arbitrarily and are 
triggered unconscious of user intent but the tempo and dynamics 
could be intentionally steered with neurofeedback training. The BCMI 

2 Named after Bo Hjorth.
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piano is more of an early experimental prototype which demonstrated 
important proof-of-concepts within the emerging field than an 
instrument effectively capable of composition and performance.

As a final example, a multi-modal BCMI involving a table top 
interface will suffice. This system is described in a 2011 paper by 
Aleksander Väljamäe and colleagues entitled Listening to Your Brain: 
Implicit Interaction in Collaborative Music Performances (Väljamäe et al. 
2011). Here the EEG is used together with hand-manipulated devices 
they call Physiopucks designed to react to their position and movement 
across a musical table top interface called Reactable. The EEG component 
used 4 channels for two participants, with one electrode placed on each 
of their upper foreheads (location Fz), and one electrode measuring 
heart rate from the wrist. The signal from the forehead was directly 
mapped in the range of 4–12 Hz (theta to alpha band), transposed into 
the audible frequency spectrum and streamed to the reactable tabletop 
interface, which detects the movement of 4 physiopucks placed upon 
it. The signal from the wrist (heart rate) generated the tempo. The 
signal from both the forehead and the wrist of one user are mapped to 
two individual physiopucks, while the other two remain unconnected 
to physiological signals but could be assigned control over other 
musical parameters such as audio filters or generators. This BCMI was 
designed for an experiment where pairs of participants were tasked 
with reproducing a fragment of music played to them by manipulating 
the physiopucks and the EEG collaboratively. The experiment aimed at 
measuring attributes of d i f f i cu l ty  and  d i s t r ibut ion  o f  cont ro l 
in learning to use a multimodal BCMI system. This example features 
a many to many signal relationship, as input sourced from both 
biosignals as well as physical movement physiopucks on the reactable 
table top results in output representing both physical and mental 
activity, embodied in the context of goal-oriented collaborative musical 
interaction. This experiment is an example of a collaborative type of 
control combining both, selective and BCI, elements – users need to 
learn to manipulate the physiopucks to replicate the reference music, 
therefore each trial is an attempt at discerning how manipulation of 
physiological signals, and physical movement of the physiopucks are 
related to the resulting sound. As higher degrees of control are obtained 
through trial and error, higher levels of efficacy can be observed in 
the collaborative musical interaction. Such cross-modal or solutions 
involving hybrid control is an important step towards future BCMI 
design, which may rely on the EEG for more of a supporting role for 
more explicitly mapped controls. 

As a summary for this section, approaches to BCMI have been 
described and discussed from the EEG input stage to the musical 
engine stage shown in Figure 1. These approaches are not exhaustive, 
and references to newly developed techniques do appear in literature 
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but have yet to be adopted for wider use (Miranda, Castet 2014). Time 
will tell which approaches will emerge as dominant in this new and 
rapidly developing field.

Prospects for BCMI Research

In conclusion, the source of the EEG signal is rich with information 
reflecting brainwave activity that can be analyzed to reveal mental 
processes, commands, states, as well as levels of arousal, attention 
and emotion (Leslie, Mullen 2011; Maskeliunas et al. 2016). Within the 
context of musical group behavior, these dimensions can be conveniently 
observed. In other words, the act of playing music together provides a 
framework within which dimensions of the EEG can be understood. 
Insofar as musical group behavior has been considered a microcosm of 
human social interaction, BCMI provides a novel way of observing and 
understanding human behavior (Keller et al. 2014), as well as a highly 
creative playing field for developing better BCIs in general.

Though the field of BCMI is in its infancy, the future looks bright for its 
application on both the technical and artistic front. For example, BCMIs 
are not yet capable of outputting imagined music – the elusive dream 
of music heard in the mind manifested instantly through speakers is 
not yet on the horizon, but it may be coming closer (Miranda, Eaton 
2014). The field is still very new but growing rapidly, and some recent 
authors aim to reduce fragmentation by encouraging collaboration 
between research communities of different specializations, and by 
systematically comparing methods so that best practices can emerge 
(Miranda, Eaton 2014). Others encourage testing BCMI systems in 
more embodied contexts, focusing on the entrainment effect of music 
and how it affects people and musical interaction within newly created 
psycho-physiological situations that can be experienced outside of the 
laboratory (Lavy 2001; Clayton et al. 2005; McGuiness, Overy 2011; 
Volpe et al. 2016). At the present time, new improved hardware and 
software which hold great promise for more reliable, customizable, and 
portable BCMI solutions are becoming commercially available and used 
in peer-reviewed research papers (Levicán et al. 2017). In short, BCMI 
is fertile ground for the formation of creative ideas and new paradigms 
at the intersection of music, neuroscience and biomedical engineering. 
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L i s t  o f  Abbrev ia t ions  Used  in  the  Ar t i c l e
BCI – brain-computer interfacing 
BCMI – brain-computer music interfacing
Cz – central site, on the top of the head (named after the cortical area 
where the electrodes are located)   
EEG – electroencephalogram 
ERD – event-related desynchronization
ERP – event-related potentials 
ERS – event-related synchronization
Fz – frontal site, on the top of the head (named after the cortical area 
where the electrodes are located)   
FFT – fast Fourier transform
fMR – functional magnetic resonance 
Hz – hertz
MEG – magnetoencephalography
MIDI – musical instrument digital interface 
O – occipital site (named after the cortical area where the electrodes 
are located)
Pz – parietal site, on the top of the head (named after the cortical area 
where the electrodes are located)   
SCP – slow cortical potential
SSVEP – steady-state visual evoked potential
VEP – visual evoked potential 
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SMADZEŅU-DATORA SASKARNE: LAIKMETĪGĀS 
PIEEJAS UN PERSPEKTĪVAS

Džekins Pousons

Kopsavilkums

Atslēgvārdi: smadzeņu-datora saskarne mūzikas jomā (BCMI),  
  elektroencefalogramma (EEG), mūzikas atskaņojums,  
  muzikālā mijiedarbe

Mūsdienās ir pieejamas daudzas jaunās tehnoloģijas, kas tuvākajā 
nākotnē būtiski iespaidos mūsu muzikālo mijiedarbi. Jau tagad vienas 
paaudzes – 50 gadu – laikā šīs mijiedarbes veidi ir radikāli mainījušies. 
Raksta uzmanības centrā ir pieejas un perspektīvas, ko paver smadzeņu-
datora saskarne mūzikas jomā (angliski brain-computer music interfacing; 
turpmāk saīsināti BCMI), un tiek sniegts pārskats par BCMI datorteh-
nikas un programmatūras komponentiem, sonifikācijas un muzifikācijas 
tehnikām, elektroencefalogrammas (EEG) iezīmju paradigmām, kartē-
šanas stratēģijām un kontroles tipiem. Mūsdienās datortehnikas un 
programmatūras komponenti BCMI sistēmām ir lietošanai droši, 
pielāgojami un portatīvi. Tādējādi BCMI ir lauks, kas strauji atklāj arvien 
jaunas iespējas un muzikoloģiskās izpētes perspektīvas.

Elektroencefalogrammas tehnoloģija ir ļāvusi ielūkoties smadzeņu 
norisēs. To raidītie elektriskie impulsi, kas tiek pierakstīti, ir bagātīgi 
piesātināti ar informāciju par psihes procesiem, stāvokļiem un emocijām. 
Šos mērījumus ir ērti izmantot, analizējot smadzeņu-datora saskarni.

BCMI transformē elektriskos signālus mūzikas parametros un uz šī 
pamata producē mūziku. Līdz ar to EEG tiek muzificēta; pievēršanās 
šai jomai ļauj pētniekiem labāk izprast smadzeņu darbības procesus 
un veiksmīgāk attīstīt smadzeņu-datora saskarnes ideju (brain-computer 
interfacing; saīsināti BCI) kopumā. Respektīvi, BCMI ir gandrīz tas pats, 
kas BCI, taču piemērots ar mūziku saistītiem mērķiem. 

BCMI iespēju lauks ir vēl gandrīz neapgūts, taču tas strauji aug; lai 
novērstu sadrumstalotību, dažādu specializāciju pētniekiem būtu vērts 
apvienoties un sadarboties; metodes būtu pastāvīgi jāsalīdzina, līdz 
tiek atrasta vislabākā pieeja. Ir svarīgi testēt BCMI sistēmas dažādos 
kontekstos, novērojot, kā jaunie muzikālās saskarnes tipi (reālajā 
pasaulē, ārpus laboratorijas) iespaido izturēšanos un atskaņojumu. 
Mūzikas pētījumi tādējādi sniedz labu iespēju atklāt noteiktus 
muzikālās saskarnes aspektus saiknē ar smadzeņu viļņiem. Piemēram, 
svarīgi ir analizēt, kā smadzeņu viļņu ritmi muzikālās darbības laikā var 
sinhronizēties un kā tas atspoguļo mūsu mūzikas pieredzi. Sinhronizēta 
fiziskā un emocionālā atsauksme uz mūziku ir visai izplatīta ekoloģiski 
validos kontekstos. Šī fenomena izpēte neironu korelācijas aspektā 
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varētu atklāt tiešākus kanālus uz kāda indivīda smadzeņu viļņiem, kas  
savukārt spēj iespaidot cita indivīda smadzeņu viļņus.

Neirofīdbeka pētījumu rezultāti tiek izmantoti terapijā, lai atbilstoši 
tai vai citai iecerei sasniegtu noteiktu psihes stāvokli. BCMI sistēmu 
iespējams integrēt šīs atgriezeniskās saites apmācības protokolā, 
proti, apmācīt interesentus, lai viņi spētu radīt vai kontrolēt mūzikas 
produktu saskaņā ar prāta diktētajiem mērķiem; to vidū var būt, 
piemēram, uzmanības koncentrācija vai nomierināšana. Ļoti vienkārši 
piemēri ir Alvina Lusjē pirmās EEG vadītās kompozīcijas: viņš vēlējās, 
lai viņa smadzeņu viļņi noteiktos brīžos ģenerētu alfa viļņu aktivitātes 
uzliesmojumus. 

BCMI sistēmas ir visai noderīgas, arī pētot t. s. ķermenisko muzikālo 
mijiedarbi (Embodied Musical Interaction). Tās ietvaros koordinēti norit 
liels daudzums mentālu procesu, un to aspektus var izmantot arī, lai 
celtu darba ražīgumu vai veidotu efektīvāku komunikāciju. Piemēram, 
mūziķi bieži sarunvalodā piemin atrašanos “grūvā” (in the groove), 
kad izjūt augstu savstarpējās koordinācijas līmeni. EEG var palīdzēt 
mums izprast, kā atrašanās “grūvā” atspoguļojas smadzeņu darbībā, 
un BCMI spēj iemācīt mums sasniegt šo stāvokli ātrāk.

Šobrīd BCMI izpētes laukā iezīmējas vairāki pamatuzdevumi. 
Pirmkārt, ir sarežģīti noteikt un iegūt aprīkojumu, kas nepieciešams 
šāda veida pētniecībai. Otrkārt, it īpaši medicīnas un mūzikas 
pētījumos ir nepieciešamas zināšanas datorprogrammēšanā, lai būtu 
iespēja izmantot algoritmus, kas tiek lietoti, klasificējot un interpretējot 
EEG datus; tie ļauj iekļūt BCMI sistēmā, kas jau rada pamatu 
smalkākiem un efektīvākiem kontroles mehānismiem. Treškārt, šo datu 
transformācija mūzikā prasa zināšanas par datorkomponēšanu, īpaši 
par programmatūras aspektu, jo jāsaņem ievērojams datu daudzums 
un tas jātransformē mūzikas parametros. Ceturtkārt, ekoloģiski 
validu eksperimentu izstrāde var sagādāt nopietnas problēmas BCMI 
sistēmām; to nosaka gan EEG ierīču mazā pieejamība, gan tas, ka šo 
ierīču izmantojuma laikā grūti ir panākt ķermeņa kustību brīvību – 
EEG pieraksts ir ļoti delikāts un jūtīgs process, jo spriedze, ko varam 
nolasīt no skalpa mērījumiem, ir ļoti vāja.

Rezumējot jāsecina, ka EEG signāls ir bagātīgs informācijas avots,  
taču mums jāmācās to interpretēt un izmantot gan praktiskiem, gan 
mākslinieciskiem mērķiem. BCMI pētniecība ir jauna joma, bet tā 
strauji attīstās, un to sekmē arvien modernāku tehnoloģiju pieejamība, 
kā arī uzkrātā pieredze. Ir liels potenciāls muzikālās mijiedarbes un tās 
atstātās ietekmes analīzei, fiksējot psihes procesus ar EEG muzifikācijas 
palīdzību. Mums jāatrod radoši veidi, kā jaunās tehnoloģijas izmantot 
pētniecībā, lai labāk izprastu sarežģīto psihofizioloģisko pieredzi, kādu 
ietver muzikālā mijiedarbe, un lai izmantotu tās sniegtās priekšrocības 
kompozīcijas procesā, mūzikas terapijā un apmācībā. 
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